My adventures with a Raspberry Pi and Arduino programming

Posts tagged ‘ardulogger’

Hobbytronics ArduLogger V3 and Arduino pro mini circuit…

I’ve got a nice simple working circuit for my ArduLogger V3 board. Re-jigged it just now to minimise the number of wires. Image below for your edification:-

Ardu Logger V3 and Arduino Pro Mini

Ardu Logger V3 and Arduino Pro Mini

Remember too, when using a solderable breadboard (from SparkFun) of the same size, the logging sd card board will rotate 180 degrees, and sit below the breadboard rather than sticking out. A nice compact logging circuit.

I’ve got some test software that simulates logging GPX (XML) format GPS based track information to the SD card every couple of seconds. Sample SD card append code is available on my GitHub page.

Connect the FTDI to the pins (on the right of the breadboard, above) to your computer, and you’re away!

BE AWARE: When programming the board, remove the ArduLogger breakout from the circuit, else it interferes with serial communication to the Arduino pro mini. Once reprogrammed, disconnect the FTDI cable, add the ArduLogger back in, then reconnect the FTDI (to power the circuit). Alternatively power the breadboard directly.

Note on wires above:-

  • Blue wire links ground on the logger to the Arduino
  • yellow, orange, and grey wires take a circuitous route to link 5V with VCC on the Arduino
  • The position of the logger board next to the Arduino automatically lines up and connects TX and RX pins (and RST)

The sharp eyed among you may have noticed the Arduini is a 3.3V 8MHz variant, whereas the power pin on the logger says 5V. You can run 3.3V through here quite happily.

Note that as previously mentioned, the ArduLogger board and the open logger software only works with Hardware Serial – software serial WILL NOT work. You have been warned.

Recent purchases…

I’ve made a couple of recent purchases after considering the full scope of my project.

Firstly I’ve bought another SparkFun 16×2 LCD module, and this time I won’t ruin it with a soldering iron by accident!!!

This LCD will be used in the D of E supervisor’s receiver module. I’ve also developed a user interface and set of menus so you can navigate through and track multiple teams, find your own position, edit settings, and even navigate to a selected team. (distance, bearing).

In order to drive this though I had to use some sort of interface. Several small buttons seemed a bit fiddly to add to the box, so I’ve opted for a PlayStation controller like Joystick! I can mount this on the project box next to the LCD. If you push this joystick down it also acts like a selection button, so I have left to right, and up to down navigation, and a selection button. Just like a standard modern GPS unit (but at a fraction of the cost).

Interestingly, SparkFun have stopped selling the black project box, now instead selling a clear one. That’s pretty awesome from a show-and-tell perspective! I can now show off the project, and see the power LEDs through the case. No need to drill LED holes that may leak in water.

I’ve also decided to buy a couple of micro SD interface cards – a ArduLogger device from a local supplier, but with the SparkFun OpenLogger software installed. This software is a bit more flexible, allowing you to name multiple files and either replace their content or append new content. Perfect for a receiver tracking multiple teams – you can have a GPX file for each day for each team. Great! I’ll also fit this on the transmitter so I can check the teams actual route later if they go out of signal line of sight. Not that I don’t trust them…

I also decided against bluetooth for a couple of reasons. Firstly, more complexity, space, and power usage for a very limited ‘download’ mode at the end of a walk. Also because I have a whopping 433MHz module already with a high baud rate! May as well re-use that to request and force an upload of an entire set of logs. They’re only a few KB for a day, so won’t take long at all to transmit.

Having two transceivers also brings the tantalising prospect of sending and receiving messages. A future ‘posh’ version of the transmitter may be a bigger battery, and LCD screen, and another joystick – so the team can send progress reports and receive information from their supervisors. E.g. ‘get off the mountain – crazy weather coming!’

I’ve also found a cheap supplier in Singapore for my Arduino Mega boards. More on that in another post. They’re approx GBP 1.80 each! Great if you want to make a lot of modules.

For my next trick I’ll use a Dremel to cut holes in my project case so I can mount the components. More to follow!…